Transporte através da Membrana Plasmática

  • Home
  • Transporte Através Da Membrana Plasmática

A Membrana Plasmática

A membrana plasmática ou plasmalema será selecionadora das substâncias que a célula troca com o ambiente externo. Devido à sua fragilidade, na maioria das vezes apresenta envoltório externo que lhe dá proteção ou sustentação física: membrana celulósica (células vegetais) e glicocálix (células animais). O glicocálix é composto por emaranhado de moléculas glicídicas: dá proteção contra agentes físicos ou químicos externos à célula; retém nutrientes ou enzimas na sua superfície.

A membrana plasmática é invisível ao microscópio óptico comum. É composta de fosfolipídios e proteínas, assim como todas as membranas que fazem parte das estruturas membranosas da célula, tais como: retículos, lisossomos, mitocôndrias, plastos etc. Ela apresenta certa elasticidade e permeabilidade seletiva, isto é, para certos tipos de moléculas ela é permeável e para outras ela é impermeável.

Atualmente o modelo mais aceito é o modelo do mosaico fluido proposto por Singer e Nicholson. Segundo esse modelo, a membrana seria composta por duas camadas de fosfolipídios onde estão depositadas as proteínas. Algumas dessas proteínas ficam aderidas à superfície da membrana, enquanto outras estão totalmente mergulhadas entre os fosfolipídios; atravessando a membrana de lado a lado. A flexibilidade da membrana é dada pelo movimento contínuo dos fosfolipídios; estes se deslocam sem perder o contato uns com os outros.

As moléculas de proteínas também têm movimento, podendo se deslocar pela membrana, sem direção.

A membrana plasmática contém e delimita o espaço da célula, mantém condições adequadas para que ocorram as reações metabólicas necessárias. Ela seleciona o que entra e sai da célula, ajuda a manter o formato celular, ajuda a locomoção e muito mais.

Em algumas células, a membrana plasmática mostra modificações ligadas a uma especialização de função. Algumas dessas diferenciações são particularmente bem conhecidas nas células da superfície do intestino.

a) Microvilosidades

São dobras da membrana plasmática, na superfície da célula voltada para a cavidade do intestino. Calcula-se que cada célula possui em média 2.500 microvilosidades. Como consequência de sua existência, há um aumento apreciável da superfície de absorçãoda membrana em contato com o alimento.

b) Desmossomos

São regiões especializadas que ocorrem nas membranas adjacentes de duas células vizinhas. São espécies de presilhas que aumentam a adesão entre uma célula e a outra.

c) Interdigitações

Como os desmossomos também têm um papel importante na coesão de células vizinhas.

O Transporte através da Membrana Plasmática

a) Difusão

No fenômeno de difusão, as moléculas de soluto e solvente, num meio líquido, tendem a se distribuir de maneira homogênea. O movimento das moléculas se dá no sentido de equilibrar a concentração da solução.

SOLUÇÃO

Solvente (água) + Soluto (sais, açúcares, etc.)

 
 
 

Concentrada= "muito"soluto e "pouco" solvente (H2O).
Diluída= "pouco"soluto e "muito" solvente (H2O).

 
 

Quando uma célula é colocada num meio rico em determinado soluto (hipertônico), passará a ter no seu interior moléculas desse soluto, contanto que a membrana plasmática seja permeável à substância. O interior (citoplasma) da célula com menor quantidade de soluto é hipotônico.

Normalmente, quanto menor for a partícula que se difunde, mais rápida será sua passagem através da membrana plasmática. Assim, água, sais minerais, açúcares (monossacarídeos), aminoácidos, se difundem através da membrana com relativa facilidade. Já macromoléculas, como proteínas ou amido não atravessam a membrana, podendo ser, no entanto, capturados pela célula por outros métodos.

Um bom exemplo de difusão, através da membrana plasmática, é o caso da entrada de oxigênio numa célula. Como há um consumo constante de oxigênio pelas mitocôndrias na respiração, a concentração interna do gás é sempre baixa em relação ao meio externo. Existe então entre a célula e o meio um gradiente de concentração (diferença de concentração), e as moléculas de oxigênio tendem a se mover do local de maior concentração (lado externo) para o local de menor concentração (citoplasma). Por outro lado, o gás carbônico estará sempre em concentração alta no citoplasma. Isto fará com que ocorra difusão constante desta substância para fora da célula.

b) Osmose - um caso especial de difusão

Imagine uma situação em que o tamanho dos poros de uma determinada membrana permita apenas a passagem das moléculas de água, porém impeça a passagem do soluto. Uma membrana deste tipo é chamada semipermeável.

Osmose é então um caso de difusão do solvente através de uma membrana semipermeável. O solvente se difunde em direção à região em que há menor concentração de suas moléculas.

c) Difusão Facilitada

A superfície da membrana plasmática possui proteínas especiais, receptoras ou permeases, que reconhecem e transportam (carregadoras) substâncias alimentares de fora para o interior das células ou vice-versa. É um processo de facilitação que segue o gradiente de concentração, sem gasto de energia, como acontece também na osmose.

d) Transporte Ativo

Já vimos que na difusão e na osmose, por processos puramente físicos, as moléculas tendem a se deslocar do local de sua maior concentração para a região de menor concentração.

Contudo o inverso também pode ocorrer em células vivas. Isto é evidentemente contrário à tendência natural da difusão, e para poder ocorrer, necessita de um gasto de energia: é o transporte ativo.

Quando analisamos o conteúdo de uma hemácia, encontramos nela concentrações de íons de sódio (Na+) muito menor do que a concentração de sódio no plasma (solução aquosa do sangue). Ora, se raciocinarmos em termos de difusão deveria entrar na célula até que as concentrações fora e dentro se igualassem.

No entanto, isto não ocorre, enquanto a hemácia estiver viva, sua concentração interna de Na+ é baixa.

A explicação para este fenômeno é a seguinte: na realidade está ocorrendo difusão e íons de Na+ estão continuamente penetrando na célula. Porém ao mesmo tempo a membrana está expulsando íons Na+ da célula, sem parar. Esta expulsão se faz por transporte ativo. Desta forma, a concentração interna de Na+ continua baixa, porém, às custas de um trabalho constante por parte da célula.

Já a situação do íon potássio (K+) na hemácia é inversa: encontramos sempre na célula concentração de potássio (K+) muito superior à do plasma.

O K+, por difusão, tende a "fugir" da célula, porém a membrana o reabsorve constantemente. Ou seja, a membrana "força" a passagem do K+ de um local de menor concentração (plasma), para o de maior concentração gastando energia no processo.

Apesar dos íons Na+ e K+ terem aproximadamente o mesmo tamanho, e, portanto igual difusibilidade percebemos que a membrana plasmática se comporta de maneira totalmente diferente em relação a cada um deles. Aqui se pode falar, sem dúvida, em permeabilidade seletiva.

Muitas são as situações em que se verifica o transporte ativo: certas algas marinhas concentram o iodo em porcentagem centenas de vezes maior do que existe na água do mar; as células da tireoide retiram o iodo do sangue por transporte ativo.

e) Osmose em célula vegetal

As células vegetais apresentam dois tipos de membranas:

Membrana celulósica (parede celular): permeável, composta por celulose (polissacarídeo) e de grande resistência mecânica. Aparece externamente à membrana plasmática oferecendo proteção à célula (como se fosse uma armadura).

Membrana plasmática (membrana celular): composição lipoproteica, elástica e semipermeável. É responsável pela seletividade das substâncias que poderão entrar ou sair da célula.

O grande vacúolo da célula vegetal adulta ocupa a maior parte do volume citoplasmático e sua concentração é o fator primordial para regular as trocas osmóticas entre a célula (membrana plasmática semipermeável) e o ambiente que a cerca.

As células com bom volume de água terão a membrana plasmática pressionada contra a parede celular rígida (celulósica), a qual vai oferecendo resistência crescente à entrada de água no vacúolo (citoplasma), sempre que a célula (citoplasma hipertônico) estiver em contato com ambiente aquoso diluído (hipotônico). Se as células captarem muita água do ambiente, ficarão túrgidas; pelo contrário, perdendo muita água para o ambiente, se tornarão plasmolisadas.

Sumário

- Membrana plasmática
i. Microvilosidades
ii. Desmossomos
iii. Interdigitações
- O transporte através da membrana
i. Difusão
ii. Osmose
iii. Difusão Facilitada
iv. Transporte Ativo
v. Osmose em célula vegetal